S@C

P1 Cold Boot Procedure

ROBOTICS

APPLICATION NOTE

CREATING A P1 BOOTABLE IMAGE USING VISUAL DSP

The P1 Boot Monitor (P1BM) contains functions for reading/writing memory (SDRAM and Serial
Flash), displaying system status, initializing peripherals and loading Intel Hex files. The P1BM
image is about 51Kbyte so it doesn’t fit in the Blackfin’s instruction cache (32K). The VisualDSP
linking loader allows the programmer to place code in off chip devices such as SDRAM. The
Blackfin memory manager then automatically loads the off chip program segments into on chip
instruction cache during program execution. The P1BM was developed using VisualDSP and
includes all source and build project files. For ease of development VisualDSP automatically
includes key initialization code when an attached JTAG emulator is used for debugging (we use
an Analog Devices ADZS-UPUSB-ICE Emulator for in house development). In order to create an
executable image that doesn’t rely on an emulator the target boot image must include
initialization code to make sure critical peripherals are properly initialized before the main body
of code is loaded.

When the P1 boots from an external Serial Flash chip it loads an initial section of code that
initializes the main system clock and SDRAM registers. The programmer is responsible for
creating this initial startup code. Included with the P1 SDK distribution is a startup file called
P1_startup.asm This file contains the code to initialize the system clock and SDRAM
registers. “P1 Startup. dpj” isa VisualDSP project file that converts P1_st ar t up. asm into
Pls. dxe. Pls. dxe isthen combined with the P1Boot Monitor program image .dxe file to form
the P1 Target Intel Hex boot image.

The ELFLoader . exe is a utility for combining multiple Blackfin compiled image files (.dxe)
into a single downloadable Intel Hex file (.hex). The .hex file is then loaded into P1 Serial Flash
using an AVR Boot Monitor Hex file load command. A special program called sf pr 0g. exe is
used to send the hex file to the AVR from a host PC. After sfprog.exe starts type the command
below:

e i Documents and Settings' stephen’Desktoy

Serial Flaszsh Download Program Ul.1

(o) Copyright 2806, S0C Robotics,. Inc.

Tupe 'e’ to exit, 'p’ to pause, 'h' for help?

— change using ¢ or b commands

lUse COM6.38488 . HN.1
—dfpl_ldw.hex_

Included with the P1 SDK distribution is a batch file called pli ni t . bat

containing the line:

© Copyright 2009, SOC Robotics, Inc. 1
Wwww.soc-robotics.com

Document Version: 1.02
1/21/2009

P1 Cold Boot Procedure S ‘ C

ROBOTICS

>elfloader "P1 Blackfin Monitor" -proc ADSP-BF532 -i

nit P1s.dxe -f hex -b spi -0
pl_Idr.hex

where“ P1 Bl ackfin Mnitor” isthe PIBM, P1s. dxe is the P1_startup.asm image, spi
selects Mode 3 Serial Flash boot load mode and p1_| dr. hex is the output Intel Hex file ready
for downloading to the P1.

The ELFloader creates a sequence of code segments that the Blackfin on chip boot code interprets
as memory location directives - so P1_st art up. asm is loaded first and run so SDRAM and the
system clock are initialized properly. The Blackfin then continues to load the rest of PIBM into on
chip cache and external SDRAM. After the PIBM is loaded execution starts at main(). If the
SDRAM is not configured or the SDRAM and CLOCK init routines are left in the PIBM code the
boot will fail.

The | ni t _Bl ackfi n(voi d) routine contains the initialization calls for SDRAM and Clock
setrup- comment this code out to create a Bootable image.

/I Setup Blackfin and initialize all peripherals
void Init_Blackfin(void)

/lInitialize System Configuration Register
1 sysreg_write(reg_SYSCFG, 0x32);

/I Initialize periperals and system components

/I Note: For Flashed versions do not reinitializ e PLL, SDRAM and Timers

1 Init_PLL();
1 Init_SDRAM();
1 Init_Timers();
/I Start code again
Init_EBIU(); /I Activate APS12 Ethernet Ada pter CS
1 Init_PPI_CM64(); /I Make sure Video Port PPI and PF8-15 are inputs
1 Init_UART(57600);
Init_UART(115200);
1 Init_UART(9600);

Init_Interrupts();

Init_RealTimeClock();

Init_MasterSPI(); // Default setting - if the AVR needs to access Serial Flash
/I then the Blackfin must relinguish contro

/I Watchdog timer setup
InitWatchdog();

/I Setup constants and variables
programmode = LBlackfinSDRAM;

/I Output startup message on UART port

SignOnMessage();
/I Output Ethernet and related configuration inf ormation
1 InternetSettings();
/I Set Intel Hex extended address variable to zer oand
/I initialize Flash programming parameters - SPI Master
/I Initialize Intel hex download parameters for F lash loading

ResetFlashVars();

intelhexecho = 0x01;
intelhexprintmode = SHORTMODE;
Init_Flash();

/I Check Flash Type(s) and set size parameters
/I 512K,1M or 2M per Flash - sets the various
/I parameters that interact with the Flash
CheckFlash();

/I Initialize the communication protocol to allow
/I with the AVR
if(Init_AVR()==-1) puts("AVR not communicating -

/I Display command prompt

communication

TBD\n\r);

© Copyright 2009, SOC Robotics, Inc.
Wwww.soc-robotics.com

Document Version: 1.02
1/21/2009

P1 Cold Boot Procedure

S@C

/I Note: Blackfin command prompt is '>' while
putchar(>");

P1_Startup.asm is below:

#include <defBF532.h>
.section program;

/
/********************** P re_l n It Section************

[--SP] = ASTAT; /* Stack Pointer (SP) is set to
[--SP] = RETS; /* scratchpad memory (OXFFBOOFFC
[--SP] = (r7:0); /* by the on-chip boot ROM */

{——SP] (p5:0);
[-
[-
[-

SP] = 10;[--SP] = I1;[--SP] = I12;[--SP] =
-SP] = BO;[--SP] = B1;[--SP] = B2;[--SP] =
-SP] = MO;[--SP] = ML;[--SP] = M2;[--SP] =
-SP] = LO;[-SP] = L1;[~-SP] = L2;[--SP] = L3

!
[xxx*%% njt Code Section

/****** PLL Setup **************/
/I Two master clock rates - fast SDRAM and slow SD
/I Some P1's operate at fast SDRAM rates - others
Setup_PLL:
PO.L = lo(PLL_CTL);
PO.H = hi(PLL_CTL); // PLL Control Register

AVR prompt is "'

********/

Kk xFAI IRk [

the end of */
)

********/
********/

RAM
don't

1 RO = 0x3A00(2); /I 391.5MHz cclk

1 RO = 0x1E00(2); /I 405.0MHz cclk
RO = 0x1C00(2); /I 378.0MHz cclk - added Marc
WI[PO0] = RO;

PO.L = lo(PLL_DIV);
PO.H = hi(PLL_DIV); // PPL Divide Register

1 RO = 0x0016(2); /I 130.00MHz sclk
1 RO = 0x0004(2); /I 101.25MHz sclk
RO = 0x0003(2); /I 126.00MHz sclk - added Mar
WIPO] = RO;
IDLE;
SSYNC;

/****** SDRAM Setup **************/
Setup_SDRAM:
PO.L = lo(EBIU_SDRRC);
PO.H = hi(EBIU_SDRRC); // SDRAM Refresh Rate
RO = 0x081A(Z);
WI[PO] = RO
SSYNC;

PO.L = lo(EBIU_SDBCTL);
PO.H = hi(EBIU_SDBCTL); // SDRAM Memory Bank Co
RO = 0x0000(2);

WIPO] = RO;

SSYNC;

PO.L = lo(EBIU_SDGCTL);

PO.H = hi(EBIU_SDGCTL); // SDRAM Memory Global
RO.H = OxEOQ08;

RO.L = 0x8849;

[PO] = RO;

SSYNC;

L3 = [SP++]; L2 = [SP++]; L1 = [SP++]; LO = [SP++]

M3 = [SP++]; M2 = [SP++]; M1 = [SP++]; MO = [SP++]
= [SP++]; B2 = [SP++]; B1 = [SP++]; BO = [SP++]
= [SP++]; 12 = [SP++]; |1 = [SP++]; |0 = [SP++]

(P5:0) = [SP++]; /I Restore registers from stack

(R7:0) = [SP++];

RETS = [SP++];

ASTAT = [SP++];

RTS;

Control Register

ntrol Register

Control Register

********/

********/

h 26, 2006

ch 26, 2006

© Copyright 2009, SOC Robotics, Inc. 3
Wwww.soc-robotics.com

Document Version: 1.02
1/21/2009

ROBOTICS

